

# Higgs searches at CDF: Standard Model and beyond

Cristóbal Cuenca Almenar for the CDF collaboration





#### **Outline**

- The Tevatron and CDF
- SM Higgs results
- BSM Higgs results
- Conclusions



#### **Outline**

- The Tevatron and CDF
- SM Higgs results
- BSM Higgs results
- Conclusions



#### **The Tevatron**

- pp collisions at  $s^{1/2} = 1.96 \text{ TeV}$
- 36×36 bunches, **396 ns** crossing period.



◆Peak Lum 20x Average



- Initial instantaneous luminosity record: > 3.5×10<sup>32</sup> cm<sup>-2</sup>s<sup>-1</sup>.
- Delivered luminosity > 6.5 fb<sup>-1</sup>
  since the beginning of Run II

▲ Peak Luminosity

#### CDF



- Over 5.5 fb<sup>-1</sup> of data on tape
- 85-90% data taking efficiency
- Results shown here use
  2 to 4 fb<sup>-1</sup>



#### **Outline**

- The Tevatron and CDF
- SM Higgs results
- BSM Higgs results
- Conclusions



# Constraints on the SM Higgs mass

- Global fit with Tevatron's
  m<sub>top</sub> = 173.1 ± 1.3 GeV and
  m<sub>W</sub> = 80.399 ± 0.023 GeV
- $m_H = 90^{+36}_{-27} \text{ GeV}$
- m<sub>H</sub> < **163 GeV** @ 95 % CL





Direct searches at LEP:
 m<sub>H</sub> > 114.4 GeV @ 95% CL

# **SM** Higgs cross section



# **SM** Higgs branching ratios



# $ZH \rightarrow v \overline{v} b \overline{b}$



luminosity **2.1** fb<sup>-1</sup> exp limit@115GeV/SM **5.6** obs limit@115GeV/SM **6.9** 

- Large E<sub>T</sub><sup>miss</sup> and 2 or 3 jets (at least 1 b-tagged)
- Extra signal from WH (missing lepton)
- Main background: QCD, W+jets and top pairs





- Data driven QCD background estimation:
  - NN with p<sub>T</sub><sup>miss</sup>.
- Events with a 3rd jet also included to increase WH acceptance
- Signal/background NN discriminant





luminosity 2.7 fb<sup>-1</sup> exp limit@115GeV/SM 9.9 obs limit@115GeV/SM 7.1



- Low event rate but clean signature
  - acceptance is crucial
  - loose lepton/b-tagging
- 2 high p<sub>T</sub> leptons, from Z
- 2 high E<sub>T</sub> jets, with 1 or 2 b-tags

CDF Run II Preliminary (2.7 fb<sup>-1</sup>)



- Backgrounds: mainly Z+jets, also top pairs
- 2D Neural Network trained to separate ZH from backgrounds
- Improve dijet mass resolution using measured E<sup>T</sup>miss.

# $WH \rightarrow \ell \nu b \overline{b}$

- Most sensitive channel at low mass
- Basic selection
  - high p<sub>T</sub> lepton (3 categories)
  - 2 high E<sub>T</sub> jets
  - large E<sub>T</sub>miss
  - 1 or 2 b-tags
- Two separate analyses combined:
  - NN discriminant
  - BDT discriminant (with ME probabilities as input)
- Main backgrounds: W+jets and top pair production









 $H \rightarrow W^+W^- \rightarrow I^+I^- \nu \overline{\nu}$ 

luminosity 3.6 fb<sup>-1</sup> exp limit@160 GeV/SM 1.5 obs limit@160 GeV/SM 1.4





- Basic selection
  - 2 high p<sub>T</sub> lepton
  - large E<sub>T</sub>miss
- Same sign leptons also included to catch associate production
- Sample separated in jet multiplicity
  0, 1 and 2 or more jets



#### NN discriminant

LLR based on ME as input variable

#### **CDF** Combination

luminosity **2.0-3.6** fb<sup>-1</sup> obs limit@115 GeV/SM **3.6** obs limit@160 GeV/SM **1.4** 



- Different channels and techniques combined in a single result
- Sensitivity approaching fast SM predictions



#### **Outline**

- The Tevatron and CDF
- SM Higgs results
- BSM Higgs results
- Conclusions



**Boston, 7 June 2009** 

### **MSSM** Higgs sector

- Minimal Supersymmetric extension of the Standard Model
- MSSM is a SUSY model with 2 Higgs doublets
- 5 Higgs bosons: h, H, A, H<sup>+</sup>
  and H<sup>-</sup>
- At tree level, 2 parameters,
  m<sub>A</sub> and tanβ, describe the
  MSSM Higgs sector
- tanβ: ratio of couplings to down and up type quarks\*
- At large tanβ, 2 neutrals almost degenerate in mass, referred as φ



\*actually,  $tan\beta$  is the ratio of the VEV of the doublets. The couplings are proportional to the VEV at tree level, before radiative corrections

# **Charged Higgs**



- Analysis performed with 2.2 fb<sup>-1</sup>
- Event selection:
  - one high p<sub>T</sub> lepton
  - large E<sup>T</sup>miss
  - at least four central jets
  - at least 2 b-tagged jets
- Binned likelihood fit to di-jet mass to extract signal, limits

- Search in the top pair sample
  - a top quark decays to a charged Higgs
  - viable at low tanβ, ~1



# Neutral Higgs: $H \rightarrow b \overline{b} + b + (\overline{b})$





- Binned maximum likelihood fit used for limit setting
- Accounting for the Higgs width dilutes sensitivity
- Loop corrections reduce sensitivity in tanβ

- Analysis performed with 2.0 fb<sup>-1</sup>
- Basic requirements: 3 b-tagged jets
- Modeling of QCD background is not trivial



### **Neutral Higgs: H** → T T



- Analysis performed with 1.8 fb<sup>-1</sup>
- Basic requirements: 2 tau leptons, at least one leptonically decaying tau
  - three different channels
- Inclusive search: both production mechanisms probed
- **Profiled likelihood scan** in signal cross section, with m<sub>vis</sub> templates
  - m<sub>vis</sub>: sum of tau products four-mom and E<sup>T</sup><sub>miss</sub>)
  - all channels fitted simultaneously



# Fermiophobic Higgs: H → Y Y

- Search for Higgs bosons that don't couple to fermions:
  - BR to photons is much larger than SM prediction
  - vector boson associated production
- Diphoton resolution < 3%
- Analysis performed with 3 fb<sup>-1</sup>
- Event requirements
  - at least 2 photons
  - at least 1 central photon
  - boosted diphoton system



#### Conclusions

- CDF has a very active program on SM and BSM Higgs searches
- Many channels, several techniques, continuos analysis upgrades keep providing improving sensitivity
- The Tevatron is integrating luminosity faster than ever
- No evidence yet of new particles, but the combined Tevatron sensitivity already reached Higgs SM predictions, excluding a mass range for the first time since LEP



